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Background: Exposure to arsenic via drinking water is a global environmental health problem. 
In utero exposure to arsenic via drinking water increases the risk of lower respiratory tract infections 
during infancy and mortality from bronchiectasis in early adulthood.

Objectives: We aimed to investigate how arsenic exposure in early life alters lung development and 
pathways involved in innate immunity.

Methods: Pregnant BALB/c, C57BL/6, and C3H/HeARC mice were exposed to 0 (control) or 
100 μg/L arsenic via drinking water from gestation day 8 until the birth of their offspring. We mea-
sured somatic growth, lung volume, and lung mechanics of mice at 2 weeks of age. We used fixed 
lungs for structural analysis and collected lung tissue for gene expression analysis by microarray.

Results: The response to arsenic was genetically determined, and C57BL/6 mice were the most sus-
ceptible. Arsenic-exposed C57BL/6 mice were smaller in size, had smaller lungs, and had impaired 
lung mechanics compared with controls. Exposure to arsenic in utero up-regulated the expression of 
genes in the lung involved in mucus production (Clca3, Muc5b, Scgb3a1), innate immunity (Reg3γ, 
Tff2, Dynlrb2, Lplunc1), and lung morphogenesis (Sox2). Arsenic exposure also induced mucous 
cell metaplasia and increased expression of CLCA3 protein in the large airways.

Conclusions: Alterations in somatic growth, lung development, and the expression of genes 
involved in mucociliary clearance and innate immunity in the lung are potential mechanisms 
through which early life arsenic exposure impacts respiratory health.
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Arsenic is a toxic metalloid contaminant in 
drinking water sources throughout the world, 
affecting hundreds of millions of people 
(Mandal and Suzuki 2002). Exposure to 
arsenic via drinking water in early life has 
been shown to increase the risk of mortal­
ity from bronchiectasis (Smith et al. 2006). 
Bronchiectasis unrelated to cystic fibrosis (CF) 
is a chronic, progressive lung disease charac­
terized by cough and sputum production, 
periodic infectious exacerbations, and pre­
mature death in adulthood (Grimwood 2011). 
Bronchiectasis associated with CF is thought to 
arise from impaired innate immune pathways 
in the lung (Barker 2002), and although the 
pathology of non-CF bronchiectasis is poorly 
understood, similar mechanisms are likely to 
be involved (Grimwood 2011). The processes 
linking arsenic exposure in early life and the 
development of bronchiectasis are unclear.

There is evidence for an effect of in utero 
arsenic exposure on innate immunity. Arsenic 
exposure during pregnancy induces oxidative 
stress and increases inflammatory cytokine 
levels and reduces T‑cell numbers in the pla­
centa and impairs thymic development in 
the infant (Ahmed et al. 2011; Raqib et al. 
2009). Arsenic exposure during pregnancy has 
also been shown to increase the risk of lower 

respiratory tract infections during infancy 
(Rahman et al. 2011). Recurrent lower respi­
ratory tract infections in early childhood and 
defective pulmonary immune defenses are 
important risk factors for the development 
of non-CF bronchiectasis (King et al. 2006). 
In addition, in  utero exposure to arsenic 
reduces birth weight, which is associated with 
worse respiratory health outcomes in later life 
(Huyck et al. 2007). Low birth weight infants 
are more susceptible to lower respiratory tract 
infections in infancy (McCall and Acheson 
1968), have impaired lung function during 
childhood (Chan et al. 1989), and are at an 
increased risk of death from chronic lung dis­
eases in adulthood (Barker et al. 1991). Taken 
together, these factors suggest that arsenic-
induced impairments in growth and develop­
ment of the lung, along with alterations in 
immune function, may contribute to the 
development of bronchiectasis in individuals 
exposed to arsenic in utero.

In the present study, we investigated the 
effects of in utero exposure to arsenic on post­
natal lung mechanics, lung structure, and 
gene expression using mouse models. We 
hypothesized that in utero exposure to arsenic 
via drinking water impairs lung development 
and immune pathways in the lung.

Methods
Animals and exposure to arsenic. Animals were 
purchased from the Animal Resources Centre 
(Murdoch, Western Australia, Australia). 
Three strains of mice were used; BALB/c, 
C3H/HeARC [TLR4 (toll-like receptor 4) 
intact], and C57BL/6. Animals were treated 
humanely and with regard for alleviation of 
suffering. All studies were conducted accord­
ing to the guidelines of the National Health 
and Medical Research Council Australia and 
approved by the institutional animal ethics 
committee. Pregnant mice were given drinking 
water containing 0 (control) or 100 µg/L of 
arsenic from gestation day (GD) 8 until birth 
of their offspring (at approximately GD20) in 
the form of sodium arsenite (NaAsO2). The 
arsenic concentration of drinking water was 
confirmed by inductively coupled plasma–mass 
spectrometry (ICP-MS) (Geotechnical Services, 
Perth, Western Australia, Australia). After their 
offspring were born, mothers were all given 
control drinking water. All mice received the 
same fixed formulation diet (Specialty Feeds, 
Glen Forrest, Western Australia, Australia). The 
arsenic content in the mouse chow was deter­
mined through ion chromatography ICP-MS 
to be 0.42  ±  0.02  µg/g total arsenic and 
0.03 ± 0.001 µg/g inorganic arsenic (Centre 
for Environmental Risk Assessment and 
Remediation, University of South Australia, 
Mawson Lakes, South Australia, Australia). 
Outcomes were measured in the offspring at 
2 weeks of age (BALB/c, n = 29 controls and 
24 arsenic exposed; C3H/HeARC, n = 14 con­
trols and 17 arsenic exposed; C57BL/6, n = 24 
controls and 32 arsenic exposed).
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Thoracic gas volume (TGV) and lung 
mechanics. To measure lung mechanics in vivo, 
mice were anesthetized, tracheotomized, and 
mechanically ventilated. Plethysmography was 
used to measure TGV as described previously 
(Janosi et al. 2006). Lung mechanics were mea­
sured using the forced-oscillation technique 
as described previously (Sly et al. 2003). [For 
further details, see Supplemental Material, p. 2 
(http://dx.doi.org/10.1289/ehp.1205590).]

Stereological analysis of lung structure. 
Lung structure was assessed using stereology 
techniques according to ATS/ERS (American 
Thoracic Society/European Respiratory 
Society) guidelines (Hsia et al. 2010). [For 
further details, see Supplemental Material, p. 3 
(http://dx.doi.org/10.1289/ehp.1205590).]

Gene expression profiling studies. Peripheral 
lung tissue was excised from mice and stabi­
lized in RNALater (Qiagen, Hilden, Germany) 
(n = 6 litters per treatment group, per strain). 
The lung tissue was disrupted in TRIzol 
(Invitrogen, Life Technologies, Carlsbad, CA, 
USA) employing a rotor stator homogenizer 
and extracted with TRIzol followed by RNA 
purification using RNeasy (Qiagen). The qual­
ity of the RNA samples was assessed on the bio­
analyzer (model 2100; Agilent Technologies, 
Santa Clara, CA, USA) [RNA integrity num­
ber (RIN) 8.30 ± 0.58]. Total RNA samples 
were labelled and hybridized to Mouse Gene 
ST1.0 microarrays (Affymetrix, Santa Clara, 
CA, USA) by the Molecular Genetic Research 
Services, at the Australian Neuromuscular 
Research Institute, QEII Medical Centre, 
Nedlands, Western Australia, Australia.

The raw microarray data were pre-
processed employing the PLIER+16 algorithm 
(gcbg background subtraction, quantile 
normalization, iterPLIER summarization) 
in Expression Consol software (Affymetrix) 
(Bosco et al. 2009). Two low-quality micro­
arrays were removed from the analysis. To 
identify differentially expressed genes, the 
data were analysed with moderated t-statistics 
(LIMMA R package; http://www.R-project.
org) (Smyth 2004) and plotted as Volcano 
plots [see Supplemental Material, Figure S1 
(http://dx.doi.org/10.1289/ehp.1205590)]. 
Genes with an absolute moderated t-statistic 
of > 3.5 and fold change > 2 were considered 
differentially expressed. The microarray data are 
available from the Gene Expression Omnibus 
repository (http://www.ncbi.nlm.nih.gov/geo/) 
under accession number GSE37831. A subset 
of differentially expressed genes was selected 
for quantitative real-time polymerase chain 
reaction quantitative real-time polymerase 
chain reaction (qRT-PCR) validation studies.

qRT-PCR. Total RNA was reverse-tran­
scribed with QuantiTect Reverse Transcription 
Kit (Qiagen) according to the manufacturer’s 
instructions. Primer assays were purchased 
from Qiagen and qRT-PCR was performed 

with QuantiTect SYBR Green (Qiagen) on the 
ABI Prism 7900HT (Applied Biosystems, Life 
Technologies, Foster City, CA, USA). Relative 
standard curves were prepared from serially 
diluted RT-PCR products. Data were normal­
ized to the Eef1a1 (eukaryotic translation elon­
gation factor 1 alpha 1) gene and multiplied by 
a scaling factor to obtain whole numbers.

Quantification of mucous cells and pro-
tein in the airways. We performed airway 
histopathology and immunohistochemistry to 
determine the expression of mucus-producing 
cells and protein expression in the airways. 
After euthanasia, a tracheal cannula was 
instilled with 4% formaldehyde at 10 cmH20. 
Lungs were embedded in paraffin wax and 
the left lobe was sectioned for airway histol­
ogy. Alcian blue–periodic acid–Schiff stain 
was used to detect mucus-producing cells, 
and immunohistochemistry, using an avidin–
biotin–peroxidase complex method (Sabo-
Attwood et al. 2005), was used to detect cells 
positive for CLCA3 (chloride channel cal­
cium activated 3 protein), MUC5B (mucin 5, 
subtype  B, tracheobronchial protein), 
and REG3γ (regenerating islet-derived 
3 gamma protein). [For further details, see 
Supplemental Material, pp. 3–4 (http://dx.doi.
org/10.1289/ehp.1205590).] The expression 
of mucus-producing and protein-positive epi­
thelial cells was calculated as the percentage 
of positively stained epithelial cells divided 
by the total number of epithelial cells in the 
airway. Airways were classified by their base­
ment membrane perimeter (large > 1,500 µm, 
medium > 1,000 µm, small < 1,000 µm).

Statistical analysis. All statistical analy­
ses were conducted using STATA (version 
9.2; StataCorp, College Station, TX, USA). 
Group means were compared using t-tests, 
analysis of variance, and analysis of covariance 
(where adjustment for a continuous variable 
was required). Data were transformed as nec­
essary to satisfy the assumptions of normality 
and homoscedasticity. A p-value of ≤ 0.05 was 
considered statistically significant.

Results
Maternal and birth outcomes. There was no 
difference in water consumption between 
mothers given 100 μg/L arsenic compared 
with control mothers for any strain of mouse 
(BALB/c, p = 0.46; C3H/HeARC, p = 0.34; 
C57BL/6, p  =  0.82) [see Supplemental 
Material, Table S1 (http://dx.doi.org/10.1289/
ehp.1205590)]. There were no differences in 
litter size (BALB/c, p = 0.30; C3H/HeARC, 
p = 0.87; C57BL/6, p = 0.54) or gestational 
age at birth (BALB/c, p = 0.84; C3H/HeARC, 
p  =  0.21; C57BL/6, p  =  0.31) between 
arsenic-exposed and control mice. Arsenic-
exposed C57BL/6 offspring were smaller in 
birth weight and birth length compared with 
control C57BL/6 offspring [p < 0.001 and 

p < 0.001, respectively (see Supplemental 
Material, Table S1)]. There were no differences 
in birth weight or length between arsenic-ex­
posed mice and control BALB/c (p = 0.15 and 
p = 0.21) or C3H/HeARC offspring (p = 0.18 
and p = 0.78). For all analyses reported there 
was no difference in responses between male 
and female offspring, so data were pooled.

TGV and lung mechanics. Arsenic-exposed 
C57BL/6 mice were significantly smaller in 
body weight (p < 0.001) than control off­
spring at 2 weeks of age and had significantly 
lower TGV than controls (p < 0.001), even 
after adjusting for snout-vent length (p = 0.04) 
[see Supplemental Material, Figure S2 (http://
dx.doi.org/10.1289/ehp.1205590)]. Arsenic-
exposed C57BL/6 mice had significantly 
higher tissue damping and tissue elastance 
(p  <  0.001 in both cases) compared with 
C57BL/6 controls (Figure 1). These differ­
ences were maintained after adjusting for TGV 
(p = 0.006 and p = 0.004, respectively). There 
was no effect of arsenic on airway resistance 
(p = 0.29) in C57BL/6 mice, which was main­
tained after adjusting for TGV (p = 0.78).

In C3H/HeARC mice there was no differ­
ence in body weight (p = 0.38) at 2 weeks of 
age for arsenic-exposed mice compared with 
control mice. TGV was significantly higher 
in arsenic-exposed mice compared with con­
trols (p = 0.02), which was maintained after 
adjusting for snout-vent length (p < 0.001) 
[see Supplemental Material, Figure S2 (http://
dx.doi.org/10.1289/ehp.1205590)]. At 2 weeks 
of age, arsenic-exposed C3H/HeARC mice had 
significantly higher airway resistance compared 
with controls (p = 0.04), which was still higher 
after adjusting for TGV (p = 0.002). There was 
no effect of arsenic on tissue damping or tissue 
elastance (p = 0.46 and p = 0.34, respectively) 
even after adjusting for TGV (p = 0.15 and 
p = 0.65, respectively) (Figure 1).

In BALB/c mice there was no difference 
in body weight (p = 0.31) for arsenic-exposed 
mice compared with control mice at 2 weeks 
of age. TGV was significantly higher in mice 
exposed to arsenic in utero (p = 0.05); how­
ever, there was no difference after adjusting for 
snout-vent length (p = 0.20) [see Supplemental 
Material, Figure S2 (http://dx.doi.org/10.1289/
ehp.1205590)]. In BALB/c mice there was no 
difference in airway resistance at 2 weeks of age 
between the groups (p = 0.82), which was also 
the case after adjusting for TGV (p = 0.28). 
There was evidence to suggest that both tissue 
damping and tissue elastance were lower in 
arsenic-exposed mice compared with controls 
(p = 0.07 and p = 0.02, respectively); however, 
these differences were negated after adjusting 
for TGV (p = 0.65 and p = 0.22, respectively) 
(Figure 1).

Stereological analysis of lung structure. 
In C57BL/6 mice, lung volume (calculated 
by stereology) was significantly smaller in 
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arsenic-exposed offspring compared with 
controls (p = 0.03). The number of alveoli 
in the lung (p = 0.01) and the surface area 
of the lung (p = 0.04) were also smaller in 
arsenic-exposed C57BL/6 mice compared with 
control mice of the same strain; however, there 
was no difference in the volume of the alveoli 
(p = 0.41) (Figure 2). We found no differences 
in any of the structural parameters measured 
between arsenic-exposed mice and control 
BALB/c mice or C3H/HeARC.

Gene expression profiling studies. Using 
microarray analysis, we identified 10 anno­
tated genes in the lung that were differentially 
expressed as a result of in utero exposure to 
arsenic (Table 1). C57BL/6 mice had 7 genes 
that were differentially expressed, whereas 
C3H/HeARC mice had 2 and BALB/c mice 
had only 1 differentially expressed gene(s). 
Only 1 gene was down-regulated in response 
to arsenic, Olfr1274 (olfactory receptor 1274), 
in the C57BL/6 strain. All of the other genes 
identified as differentially expressed were 
up-regulated in response to arsenic exposure.

Three of the 10 genes that were up- 
regulated [Clca3, Muc5b, and Scgb3a1) 
(secretoglobin, family 3A, member 1] are 
involved in the regulation and/or secretion 
of mucus in the airways (Roy et al. 2011). 
These genes were all up-regulated in C57BL/6 
mice. Four of the 10 genes {Lplunc1 [long 
palate, lung, and nasal epithelium carcinoma-
associated protein 1], Tff2 [trefoil factor 2 
(spasmolytic protein 1)], Reg3γ, and Dynlrb2 
[dynein light chain roadblock–type 2]} that 
were up-regulated are involved in innate 
immune function (Bingle and Craven 2002; 
Jin et al. 2009; McAleer et al. 2011; Nikolaidis 
et al. 2003). Lplunc1, Tff2, and Reg3γ were 
up-regulated in C57BL/6 mice, and Dynlrb2 
was up-regulated in C3H/HeARC mice. 
We also identified a gene involved in lung 
branching morphogenesis and epithelial cell 
differentiation, Sox2 (Gontan et al. 2008), 
which was up-regulated in C3H/HeARC mice. 
In BALB/c mice, an oncogene [Ssxb10 (synovial 
sarcoma, X member B, breakpoint 10)] was the 
only gene up-regulated (Chen et al. 2003).

Validation of array expression using qRT-
PCR. Using qRT-PCR, we validated the 
expression of four genes in C57BL/6 mice 
(Clca3, Muc5b, Tff2, and Reg3g) and one gene 
in C3H/HeARC mice [Sox2 (SRY-box con­
taining gene 2)]. In all cases, the expression 
patterns, normalized to the Eef1a1 gene, cor­
related to those obtained in the microarray 
analysis (Figure 3).

Quantification of mucus and protein in the 
airways. We used Alcian blue–periodic acid–
Schiff staining and immunohistochemistry to 
quantify mucus-producing cells and CLCA3, 
MUC5B, and REG3γ protein in the airways 
of BALB/c, C3H/HeARC, and C57BL/6 
mice (Figure 4). We found that arsenic expo­
sure in utero caused mucous cell metaplasia in 
the large (p < 0.001) and medium (p = 0.02) 
airways of C57BL/6 mice and increased 
the expression of CLCA3 (p  <  0.01) and 
REG3γ (p = 0.02) proteins in the large air­
ways of C57BL/6 mice (Figure 5). The levels 
of MUC5B protein were low and not dif­
ferentially expressed between the airways of 

Figure 1. Airway resistance (Raw; A–C), tissue damping (G; D–F) and tissue elastance (H; G–I) plotted against TGV for 2-week-old BALB/c (A,D,G), C3H/HeARC 
(B,E,H), and C57BL/6 (C,F,I) mice exposed to 100 µg/L arsenic via drinking water or control water from GD8 to birth.
*p < 0.05 compared with control.
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arsenic-exposed mice and control C57BL/6 
mice. There were no differences in the number 
of mucus-producing cells or CLCA3, MUC5B, 
or REG3γ proteins between the airways of 
arsenic and control mice of either the BALB/c 
or C3H/HeARC strains (data not shown).

Discussion
Exposure to arsenic in utero has been shown to 
increase morbidity from lower respiratory tract 
infections in infancy and increase mortality 
from bronchiectasis in adulthood (Rahman 
et al. 2011; Smith et al. 2006). In the present 

study, our results show that the response to 
arsenic in mice is genetically determined and 
that the C57BL/6 strain is the most suscep­
tible of the three strains studied. In utero expo­
sure to arsenic impaired somatic growth, lung 
volume, and parenchymal lung mechanics 
in C57BL/6 mice. In addition, exposure to 
arsenic during gestation is capable of alter­
ing the expression of genes that function in 
mucociliary clearance, innate immunity, and 
lung growth in the offspring. Arsenic also 
induced mucous cell metaplasia and increased 
expression of CLCA3 protein in the airways 
of C57BL/6 mice. Increased mucus secre­
tion and altered lung growth may impair the 
ability of the airways to clear pathogens and 
thus provide a potential mechanism by which 
exposure to arsenic increases the risk of devel­
oping chronic localized infections leading 
to bronchiectasis.

Exposure to arsenic in  utero impaired 
intrauterine growth and lung development. 
Arsenic-exposed C57BL/6 mice were small for 
gestational age; had lower lung volume, lung 
surface area, and alveolar number; and had 
impaired lung mechanics compared with con­
trol mice of the same strain. This finding sup­
ports results from a recent study that also found 
that C57BL/6 mice exposed to arsenic in utero 
had deficits in growth in early life (Kozul-
Horvath et al. 2012). Impairments to body 

Table 1. Genes altered by arsenic exposure.

Mouse strain/ 
gene symbol Gene name Function Reference Fold change
C57BL/6

Clca3 Chloride channel calcium activated 3 Regulation of mucus production and secretion Zhou et al. 2002 15.05
Lplunc1 Long palate, lung, and nasal epithelium 

carcinoma-associated protein 1
Innate immunity in mouth, nose, and lungs Bingle and Craven 2002 13.72

Reg3γ Regenerating islet-derived 3 gamma Innate immunity–antibacterial properties in the mucus secretions McAleer et al. 2011 8.77
Scgb3a1 Secretoglobin, family 3A, member 1 Secretary cell subtype in the lung Roy et al. 2011 5.80
Tff2 Trefoil factor 2 (spasmolytic protein 1) Innate immunity–allergen induced gene, expressed in mucous cells Nikolaidis et al. 2003 3.26
Muc5b Mucin 5, subtype B, tracheobronchial Major mucin in respiratory mucus Kirkham et al. 2002 3.16
Olfr1274 Olfactory receptor 1274 Olfaction Zhang and Firestein 2002 –2.07

C3H/HeARC
Dynlrb2 Dynein light chain roadblock–type 2 Regulation of TGF-B pathway Jin et al. 2009 2.36
Sox2 SRY-box containing gene 2 Lung branching morphogenesis and epithelial cell differentiation Gontan et al. 2008 2.27

BALB/c
Ssxb10 Synovial sarcoma, X member B, breakpoint 10 Cancer Chen et al. 2003 2.41

Figure 3. Validation of microarray gene expression in a subset of genes (Muc5b, Clca3, Tff2, Reg3γ, and Sox2) using qRT-PCR. All values were normalized to the 
Eef1a1 gene.
*p < 0.05 compared with control.
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size and lung size during infancy may result 
in airways and alveoli that are prone to closure 
and collapse, thus increasing the susceptibility 
to obstruction and increased pathogen load. 
Low birth weight is associated with impaired 
lung function and increased mortality from 
obstructive lung disease (Barker et al. 1991; 
Hulskamp et al. 2009). A potential mechanism 
for the observed intrauterine growth restric­
tion may be oxidative stress caused by arsenic-
induced production of reactive oxygen species 
inducing placental insufficiency (Vahter 2007). 
This proposed mechanism is supported by the 
knowledge that the mouse strain most sensitive 
to arsenic, C57BL/6, is highly susceptible to 
the oxidative stress effects of cigarette smoke 
and bleomycin compared with other strains 
(Chen et al. 2001a; Yao et al. 2008). There is 
evidence from cigarette smoke exposure mod­
els that intrauterine growth restriction alone 
can cause alterations in early life lung function 
(Larcombe et al. 2011). It is therefore possible 
that the effects of arsenic exposure on body 
weight, lung function, and lung size in the 
present study, in the C57BL/6 mice at least, 
were due to arsenic altering the nutritional sta­
tus of the offspring. However, we also identi­
fied responses, such as alterations in lung gene 
expression and airway morphology that seem 
to be unique to arsenic exposure and have yet 
to be linked with altered nutritional status. It 
is clear that exposure to arsenic during preg­
nancy is having a significant effect on intra­
uterine growth, which may predispose infants 
to chronic lung diseases through impairments 
in lung growth and development.

We found that arsenic exposure during 
pregnancy was capable of altering the expres­
sion of genes in the lung at 2 weeks of age. 
The differentially expressed genes identified are 
involved in mucus production, innate immu­
nity, and lung morphogenesis pathways. The 
gene that was most highly up-regulated was 
the calcium-activated chloride channel, Clca3 
gene. This gene has been detected in goblet 
cells within the tracheal and bronchial epithe­
lium of mice when metaplasia of mucous cells 
is present (Leverkoehne and Gruber 2002) and 
is thought to play a role in the mucus hyper­
secretion seen in chronic obstructive pulmo­
nary disease (COPD) and CF in humans 
(Rogers 2003; Shale and Ionescu 2004). 
Blocking the production and/or activity of 
Clca3 can inhibit the production of mucus, 
whereas up-regulation can enhance mucus pro­
duction (Zhou et al. 2002). Clca3 has been 
implicated in the regulation of mucus secretion 
by controlling the packaging and/or release 
of secreted mucins such as MUC5AC and 
MUC5B, which are the major gel-forming 
mucins in respiratory secretions (Nakanishi 
et al. 2001; Zhou et al. 2002). MUC5B levels 
are increased in sputum from the airways of 
patients with COPD and CF compared with 

Figure 4. Airway histology showing that arsenic induces mucous cell metaplasia and increases CLCA3 
protein expression in the airways of C57BL/6 mice. Lung sections stained with Alcian blue–periodic acid–
Schiff (A,B) and an antibody to CLCA3 (C,D) show increased mucous cell (dark purple stain) and CLCA3 
protein (brown stain) expression in the airways of C57BL/6 mice exposed 100 µg/L arsenic (B,D) via drink-
ing water or control water (A,C) from GD8 to birth. Bars = 200 µm.

Figure 5. Quantitation of mucus-producing cells (A) and CLCA3- (B), MUC5B- (C), and REG3γ- (D)
positive epithelial cells in the airways of C57BL/6 mice. Values are expressed as the percentage of 
mucus-producing epithelial cells and protein-positive epithelial cells ÷ total number of epithelial cells in 
large, medium, and small airways of C57BL/6 mice exposed to 100 µg/L arsenic via drinking water or con-
trol water from GD8 to birth.
*p < 0.05 compared with control.
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sputum from healthy airways (Kirkham et al. 
2002) and are associated with the overproduc­
tion of mucus in diseased airways (Chen et al. 
2001b). In our study, Muc5b gene expression 
was also up-regulated and mucous cell meta­
plasia was present in the airways of C57BL/6 
mice. Mucous cell metaplasia is a pathological 
feature of various respiratory diseases including 
both CF and non-CF bronchiectasis, COPD, 
and asthma (Kim 1997). Mucus hypersecretion 
can hinder the ability of the cilia to clear mucus 
from the airways, thus increasing the suscep­
tibility to viral and bacterial colonization and 
infection (Shale and Ionescu 2004). Increased 
mucus in the airways may also lead to obstruc­
tion and contribute to abnormalities in lung 
mechanics (Rose et al. 2001). Increased mucus 
production resulting in increased susceptibility 
to respiratory infections combined with air­
way obstruction can lead to chronic localized 
inflammation: a hallmark of the bronchiectatic 
lung (Barker 2002).

As well as increasing the risk of infection, 
arsenic exposure in utero may compromise the 
immune response to respiratory infections. 
In the present study, we identified four genes 
that play a role in modulating the immune 
system that were up-regulated by exposure to 
arsenic. TFF2 protein has a role in mucosal 
epithelial restitution and wound healing in 
the gastrointestinal tract (Podolsky 2000). In 
the lung, TFF2 protein expression is increased 
in mucous cells of allergen-challenged mice 
and is up-regulated in airway epithelial cells in 
subjects with asthma (Kuperman et al. 2005; 
Nikolaidis et al. 2006). Tff2 has also been iden­
tified as a candidate gene associated with strain-
dependent differences in lung function in mice 
(Ganguly et al. 2007). REG3γ is a protein with 
antimicrobial activity identified as playing a 
role in innate mucosal immunity in the gastro­
intestinal tract (Zheng et al. 2008) and more 
recently in the lung (McAleer et al. 2011). 
Dynlrb2 is differentially expressed in patients 
with primary ciliary dyskinesia, a condition 
that can lead to the development of bron­
chiectasis due to impairment of mucociliary 
clearance (Geremek et al. 2011). Dynlrb2 has 
also been shown to regulate the TGF-β (trans­
forming growth factor, beta) signalling path­
way (Jin et al. 2009). Increased production 
and activation of TGF-β has been linked to 
immune defects associated with the suscepti­
bility to opportunistic infection (Letterio and 
Roberts 1998). LPLUNC1 is a protein sug­
gested to play a role in innate immunity in the 
lung, mouth, and nose, through either direct 
antibacterial actions or by indirect neutralizing 
activity (Bingle and Craven 2002). Mucous cell 
metaplasia and altered immune pathways in the 
lung may partially explain the increased suscep­
tibility to and exacerbated response to influ­
enza infection seen in a mouse model of arsenic 
exposure (Kozul et al. 2009). Importantly, 

compromised innate immune pathways in the 
lung during infancy may increase the risk of 
respiratory infections in early life, when sus­
ceptibility to infection is high, and increase 
the risk of developing chronic lung disease in 
adulthood.

To put these observations into context, we 
recognize that there were some limitations to 
the present study. In the mouse chow given 
to all the mice in our study, there was a small 
amount (0.03 µg/g) of inorganic arsenic, which 
has the potential to alter gene expression in the 
liver and lung (Kozul et al. 2008). However, 
the concentrations of inorganic arsenic in our 
study were low, the same diet was given to all 
of the mice, and we still detected differences in 
a variety of outcomes, including gene expres­
sion, as a result of the exposure to 100 µg/L 
arsenic in drinking water. Another limitation 
of the study is that only a single concentra­
tion of arsenic (100 µg/L) was used in our 
study. This represents a relatively high con­
centration of arsenic [10 times higher than the 
current World Health Organization (WHO 
2011a) maximum contaminant level], and the 
effects observed in the present study may not 
reflect changes that would occur at higher or 
lower doses. In the present study, we identi­
fied only a small number of genes that were 
differentially expressed as a result of arsenic 
exposure. Even by relaxing our criteria for dif­
ferential expression, we were not able to iden­
tify any functionally coherent pathways using 
more complex methods of analysis. Because 
we assessed the lung tissue sometime after the 
arsenic exposure had ceased, it is possible that 
we missed some pathways and there is value in 
examining expression networks in lung tissue 
during exposure in the future (Petrick et al. 
2009). Our study, however, has identified and 
validated a number of genes that we believe 
provide important clues to the underlying 
mechanisms and, given their function, are 
likely to be important in the lung disease phe­
notype induced by arsenic exposure in humans 
(e.g., infection/bronchiectasis). In addition, 
we examined the effects of arsenic exposure 
on the lung in offspring at only 2 weeks of age 
in the present study. The long-term effects of 
arsenic exposure on lung development may 
differ between strains whereby changes in 
parenchymal growth may manifest at differ­
ent ages (Ngalame et al. 2012). An analysis of 
later time points may provide further informa­
tion about the genetic basis of susceptibility to 
arsenic-induced lung disease.

Conclusions
In the present study, we have shown that 
in utero exposure to arsenic via drinking water 
impairs lung development, resulting in reduced 
lung size and impaired lung structure and 
function. The response to arsenic is geneti­
cally determined and the C57BL/6 strain is 

the most susceptible. Arsenic exposure in utero 
altered the expression of genes that regulate 
innate immunity, mucus production, and 
morphogenesis of the lung. Arsenic-induced 
alterations in the development of lung struc­
ture and innate immunity may reduce the 
ability to clear respiratory pathogens during a 
period of high susceptibility in infancy (Simoes 
1999). Because respiratory infections are one 
of the leading causes of mortality in children 
under 5 years of age in developing countries 
(WHO 2011b), arsenic-induced increases in 
susceptibility to infection can have devastating 
effects on infant morbidity and mortality in 
affected areas. In addition, recurrent respiratory 
infections throughout life can contribute to the 
development of chronic lung diseases, such 
as bronchiectasis, in adulthood. The evidence 
from our mouse model is that in utero exposure 
to arsenic impairs lung development, resulting 
in altered structure, function, and gene expres­
sion in infancy. Further investigation into how 
arsenic affects lung development in humans 
will be essential to understand and prevent 
escalating morbidity and mortality from respi­
ratory disease in arsenic-exposed populations.
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